<scp>Hot‐electron emission‐driven</scp> energy recycling in transparent plasmonic electrode for organic solar cells

نویسندگان

چکیده

Plasmonic metal electrodes with subwavelength nanostructures are promising for enhancing light harvesting in photovoltaics. However, the nonradiative damping of surface plasmon polaritons (SPPs) during coupling sunlight results conversion excited hot-electrons to heat, which limits absorption and generation photocurrent. Herein, an energy recycling strategy driven by hot-electron emission SPP trapped plasmonic is proposed. A transparent silver-based electrode (A-PME) a periodic hexagonal nanopore array constructed, combined luminescent organic emitter radiative recombination injected hot-electrons. Owing suppressed loss via broadband emission, A-PME achieves optimized optical transmission average transmittance over 80% from 380 1200 nm. Moreover, indium-tin-oxide-free solar cells yield enhanced power efficiency 16.1%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined plasmonic gratings in organic solar cells.

We propose an organic solar cell structure with combined silver gratings consisting of both a front and a back grating. This combination provides multiple, semi-independent enhancement mechanisms which act additively, so that a broadband absorption is obtained. Both gratings couple the incident light into various plasmonic modes, showing a more localized or propagating character respectively. I...

متن کامل

Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells

In this contribution, the optical losses and gains attributed to periodic nanohole array electrodes in polymer solar cells are systematically studied. For this, thin gold nanomeshes with hexagonally ordered holes and periodicities (P) ranging from 202 nm to 2560 nm are prepared by colloidal lithography. In combination with two different active layer materials (P3HT:PC61BM and PTB7:PC71BM), the ...

متن کامل

Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes.

Surface plasmon enhanced photo-current and power conversion efficiency of organic solar cells using periodic Ag nanowires as transparent electrodes are reported, as compared to the device with conventional ITO electrodes. External quantum efficiencies are enhanced about 2.5 fold around the peak solar spectrum wavelength of 560 nm, resulting in 35% overall increase in power conversion efficiency...

متن کامل

Highly efficient and bendable organic solar cells using a three-dimensional transparent conducting electrode.

A three-dimensional (3D) transparent conducting electrode, consisting of a quasi-periodic array of discrete indium-tin-oxide (ITO) nanoparticles superimposed on a highly conducting oxide-metal-oxide multilayer using ITO and silver oxide (AgOx) as oxide and metal layers, respectively, is synthesized on a polymer substrate and used as an anode in highly flexible organic solar cells (OSCs). The 3D...

متن کامل

Dual plasmonic nanostructures for high performance inverted organic solar cells.

Polymer-fullerene-based bulk heterojunction (BHJ) solar cells have many advantages, including low-cost, low-temperature fabrication, semi-transparency, and mechanical fl exibility. [ 1 , 2 ] However, there is a mismatch between optical absorption length and charge transport scale. [ 3 , 4 ] These factors lead to recombination losses, higher series resistances, and lower fi ll factors. Attempts ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: InfoMat

سال: 2022

ISSN: ['2770-5110', '2567-3165']

DOI: https://doi.org/10.1002/inf2.12285